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Abstract. Taking into account the possibility of particle-antiparticle pair production, we 
have investigated the onset of Bose-Einstein condensation in an ideal relativistic Bose gas 
confined to an Einstein universe. Through an extensive use of the Poisson summation 
formula, we have carried out an explicit evaluation of the summations-over-states appearing 
in the problem, which enables us to derive rigorously the condensate fraction, po / ’p ,  and 
the specific heat at constant volume, cp, of the system as smoorh functions of temperature- 
from T a  T, down to T=O K. A detailed asymptotic analysis of the growth of the 
condensate and of the specific-heat maximum is then carried out and, in each case, finite-size 
corrections to the standard bulk results are obtained in explicit terms. Special cases of the 
non-relativistic and extreme relativistic versions of the model are examined at some length 
and, wherever possible, a comparison is made with the findings of the previous authors. 

1. Introduction 

A few years ago, using the formalism developed by Pathria and his collaborators for 
the study of Bose-Einstein condensation in finite systems (Pathria 1972a, Greenspoon 
and Pathria 1973, 1974, 1975, Zasada and Pathria 1976, 1977), Al’taie (1978) carried 
out a detailed investigation of the critical behaviour of an ideal Bose gas confined to 
the background geometry of an Einstein universe. The primary motivation for that 
investigation was to extend the study of Bose-Einstein condensation to curved space 
and to determine the manner in which the physical properties of the system are affected 
by the inherent finiteness of the space available. Owing to the spherical symmetry of 
the problem, the analysis in this case involves summations over one quantum number 
only and is, therefore, expected to be mathematically tractable. However, as Al’taie 
discovered in his investigation, the problem is tractable only in its non-relativistic 
version, with the result that he had to confine his analysis to this case alone. 

Al’taie examined the twin problems of (i)  the growth of the condensate, and (ii) 
the behaviour of the specific heat, especially the location and height of its maximum, 
as a function of temperature. He showed that, apart from the expected effect of 
‘smoothening out’ the singularities of the thermodynamic functions of the system at 
the erstwhile critical point T = T,, the finiteness of the system resulted in the enhance- 
ment of the condensate fraction, the displacement of the specific-heat maximum towards 
higher temperatures and the reduction in the height of the maximum-corrections to 
the bulk behaviour in each case being of order a-’, where a denotes the radius of (the 
spatial part of) the Einstein universe. 

Since the problem of Bose-Einstein condensation in the Einstein universe is 
inherently relativistic in nature, a more complete analysis of the situation is clearly in 
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order. This was indeed attempted by Araglo de Carvalho and Goulart Rosa (1980), 
but only with partial success. In view of the aforementioned intractability of the 
finite-size terms in the relativistic case, these authors could not derive the desired 
results in closed form and were forced to draw only qualitative, or at best semi- 
quantitative, conclusions about the effects in question. Nevertheless, they did show 
quite generally that, for the study of finite-size effects in this problem, the neglect of 
relativistic effects was totally unjustified. 

In this paper we carry out a rigorous analysis of this problem, including not only 
the conventional relativistic effects but also the possibility of particle-antiparticle pair 
production which has lately been shown to be an essential ingredient of the relativistic 
case; for details, see Haber and Weldon (1981, 1982) and Singh and Pandita (1983). 
A study of Bose-Einstein condensation in a curved space of finite size, including the 
above mentioned effects, appeared at first sight to be rather formidable. It turned out, 
however, that the inclusion of antiparticles into the problem rendered the analysis far 
more tractable than it originally was and enabled us to derive finite-size corrections 
to the relativistic bulk behaviour of the system in a closed form. We could, therefore, 
draw as rigorous and as thorough a set of conclusions in the relativistic case as Al’taie 
had done in the corresponding non-relativistic case. Remarkably enough, our findings 
are qualitatively similar to those of Al’taie’s; quantitatively, of course, they depend 
on the severity of the relativistic effects which, in turn, is determined by the parameter 
p /  m3,  where p is (essentially) the ‘number density’ in the system while m is the particle 
mass. 

For simplicity, we confine our study to the case of spinless particles (s  = 0). The 
case of spin-1 particles can be studied in a similar fashion. 

2. Formulation of the problem 

We consider an ideal Bose gas composed of NI particles and N2 antiparticles, each 
of mass m, confined to an Einstein universe of (spatial) radius a. Since particles and 
antiparticles are supposed to be created in pairs, the system is governed by the 
conservation of the number Q (=  NI - N 2 ) ,  rather than of the numbers NI and N2 
separately; the conserved quantity Q may be looked upon as a kind of generalised 
‘charge’. In equilibrium, the chemical potentials of the two species will be equal and 
opposite: pl = -p2 = p, say, with the result that (Haber and Weldon 1981) 

N I -  - C [ep(F-p) - 11-I, 11-I, (1) N~ = C [eP(E+p) - 
E E 

where ,8 = 1/  T and E = ( k 2  + m2)1’2; for economy, we shall use units such that h = c = 
kg= 1. Note that both E and p include the rest energy m of the particle (or the 
antiparticle) and, for the mean occupation numbers in the various states to be positive 
definite, we must have: IpI s m. Assuming that, to begin with, p > 0, it readily follows 
that N I  > N2 and hence Q > 0. In view of the conservation of Q, p then stays positive 
under all circumstances. Without loss of generality, we shall assume that this indeed 
is the case. 

The eigenvalues, k,, of the wavenumber k for a free particle confined to the Einstein 
universe are given by (see, for example, Schrodinger 1938) 

k ,  = n/a ( n  = 1, 2, 3 , .  , .), (2) 
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with multiplicity gn = nz .  The ‘charge density’ p is then given by the expression 

m 

- C sinh(j@p) n’exp [ -jPm ( 1+- m:4)1/23. (3) p=--- 
N*-N2 2 

v Vj=l n = l  

Applying Poisson’s summation formula, 

where 
m 

9( q )  = l-mf( n) eZniqn dn, (5) 

and substituting V=2.rr2a3 (Pathria 1974), equation (3) takes the form 

where K , ( z )  are the modified Bessel functions while 

The term with q = 0 corresponds to the bulk result, see (4) and (5), 

m3 * 
P ~ P ,  =- C ( i ~ m ) - ’  sinh(jPp)Kz(jPm), (8) 

72 j = l  

which agrees with the corresponding result obtained by Singh and Pandita (1983). We 
may, therefore, write 

Clearly, the terms with q # 0 contain both the condensate and the finite-size effects in 
the problem. 

The sumation over j appearing in (9) can also be handled with the help of the 
Poisson summation formula, 

so that 

where 

p r =  p +(27ri/@)l, 

while z and q’ are given by (7). The integration over j is somewhat involved but can 
be carried out exactly; see appendix. Using (A5) and noting that (Gradshteyn and 
Ryzhik 1965) 

(13) K I l 2 ( z )  - zK3l2(z )  = - z K - , , ~ ( z )  = - ( $ T Z ) ” ~  e-’, 
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we obtain after some algebra 

The summation over q is now straightforward, with the result that 

It may be emphasised here that in going from equation (3) to (15) we have made no 
approximation whatsoever. 

Now, the onset of Bose-Einstein condensation is marked by the fact that the 
chemical potential p of the system approaches the single-particle rest energy m. In 
that event, the bulk term appearing in (15), and given explicitly by (8), can be expressed 
as (Singh and Pandita 1983) 

At the same time, the term with 1 = 0 in (15) dominates heavily over terms with I # 0. 
To see this, we recall (12) and write the summation over 1 as 

p ( m 2 - p 2 ) " 2 { e ~ p [ 2 ~ a ( m 2 - p 2 ) i / 2 ] -  I}-' 

x(exp(2mz[(m2-p2) +4.rr2p-212-4~ipp-'1]1/2}- I ) - ' ,  (17) 

where the primed summation implies that the term with 1 = 0 is excluded from this 
sum. As p + m, so long as a( m2 - p2) ' I2  is of order unity or less, the main term in 
(17) would make a significant contribution to p. The other terms, however, are at best 
of order exp[-a(m/p)'"]., i.e. O(e-"/^.), where AT (=  ( 2 7 ~ p / m ) ' / ~ )  denotes the mean 
thermal wavelength of the particles. Making the very reasonable assumption that 
a >> AT, these terms can be dropped with impunity. The important thing to note is that 
no errors of order ( A , / U ) "  are committed if we retain only the term with 1 = 0. 

Introducing the thermogeometric parameter y (Pathria 1983) appropriate to this 
problem, namely 

y = T ( m ' - p ' ) ' / '  a, (18) 
equation ( 1  5 )  may now be written as 

Combining this with (16), we finally obtain 

p = p B ( &  m )  - (m/2.rr2pa)y coth y + O ( y 2 / a 2 ) .  (20) 

Equation (20) constitutes our basic result from which the crucial parameter y(p, p )  
can be determined. 

At this point we would like to make two observations on our passage from equation 
(15) to (20). First, one should note how agreeably the singular term, containing 
( m 2 - p 2 ) ' / ' ,  in the expansion (16) of the bulk function pB(/3, p )  is cancelled by a 
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similar term residing in the function y/(e” - l ) ,  to yield a final result which is a 
function of y 2  only and, hence, is non-singular. For a finite system, this should indeed 
be the case. Second, the practical limits of accuracy to which the various physical 
properties of the system may now be calculated are determined by the accuracy of the 
expansion of the bulk term p s ( P ,  p )  and not by the term containing finite-size effects 
(which has been obtained in a closed form). For a study of finite-size effects to order 
a- ’ ,  it is sufficient to consider terms displayed explicitly in equation (20). 

3. Growth of the condensate 

The condensate in this problem arises from the single-particle ground state n = 1 and 
is given by the expression, see equations (1)-(3), 

~ o = ( 1 / 2 r 2 a 3 ) { [ e x p ~ ( ~ , - p ) - 1 ] - ’ - [ e x p ~ ( ~ ,  + p ) -  I]-’}. (21) 

E ,  = m( 1 + 1/2m2a2) 

p Î m( 1 -y2/2r2m2a2) ,  (23) 

po= 1 / 2 ~ ~ a ~ p ( ~ ~  - p ) =  m / a p ( y 2 + r 2 ) .  (24) 

In view of the fact that, for ma >> 1, 

(22) 

and, for p approaching m, 

the expression for po effectively reduces to 

Equations (22)-(24) show that, so long as y2=O(1) ,  the condensate density in the 
system remains of order a - ’ ,  which means that Qo remains of order a2, i.e. O(Q2’3) .  
A macroscopic growth of the condensate results only when y2 + -r2 or, in other words, 
I-1. + E l .  

For a detailed study of this process, we make use of the identity 

“ 1  
q = l Y  +.n q 

y c o t h y = 1 + 2 y z  

whereby equations (20) and (24) yield, to leading order in a - ’ ,  

For comparison we note that, in the case of the bulk system ( a  + CO), there exists a 
critical temperature, P = pc, given by 

P d P o  m )  = P. 

Using the function W ( p ,  p )  of Singh and Pandita (1983), 

W P ,  p )  = 2 f (jPm1-l sinh(jpk)K2(jPm), 
]=I  
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this condition may be written as, see equation (8), 

m 2 n 2 p  
j = 1  m3 W(Pc, m )  = 2 ( j p c m ) - '  sinh( j&m) K2( j&m) = -. 

The bulk condensate density is then given by the singular expression 

In the case of the finite system, on the other hand, the condensate density is given by 
the non-singular expression 

where y 2 ,  as a function of P, is determined by, see equation ( 2 0 ) ,  

Note that the parameter Pc denotes the critical temperature of the bulk system; while 
no such parameter exists in the case of the finite system, it still serves as a useful 
reference point in this case. 

For a quantitative comparison of equations (30) and (31), we must solve (32) for 
y 2 ( P ) ,  which can only be done numerically. A few general results, however, can be 
obtained as follows. First of all, at P = Pc, we have: ( y  coth y) ,=O,  i.e. y: = -472. 
Equation (31) then gives, see also (24), 

( P O L  = 4m/3a2Pca ( T =  T c ) ,  (33) 

Y = (Pcm)21d W/dPl,=,cat 

which implies that ( Qo)c = O( Q2'3). For y 2  >> 1, equation (32) reduces to 

( 0 <  tcc 1, at >> l ) ,  (34) 

where W = W(P,  m ) ,  while t is the dimensionless temperature variable 

t = ( T -  Tc)/ T c -  ( P c -  P ) / P c .  

One then obtains, directly from (24), 

(35) 

Po= 1/Pfm3[(d W/dP)cI2a3t2, (36) 

which implies that Qo = O( 1). At lower temperatures ( P  > Pc),  we run into the limiting 
situation y2+ -&, i.e. y cothy-, --CO. This requires that /at1 >> 1, i.e. It1 be of order 
greater than U - '  (which includes the possibility that It1 may even be O(1)). Equation 
(31) now gives 

PO ( p 0 ) B  +3m/4f12Pa, (37) 
which holds all the way down to 0 K. 

Comparing equations (33) and (36) with (30a), and (37) with (30b), we conclude 
that, irrespective of the relativistic efects in the problem, the finiteness of the system 
causes an enhancement in the condensate density po at all temperatures. For a 
considerable range of temperatures, covered by (37), the enhancement is directly 
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proportional to T and inversely proportional to a. Around T = T,, where It1 = O( a - ’ ) ,  
the enhancement is still inversely proportional to a but depends in a more complicated 
manner on T. For T >  T,, such that ( a ? )  >> 1, the enhancement tapers off as a - 3 .  In 
qualitative terms, these findings are similar to the ones arrived at by Al’taie in the 
non-relativistic case. Quantitatively, too, we find complete agreement with Al’taie’s 
results if the function W ( p ,  m )  is replaced by its non-relativistic limit, namely 

LW(p, m ) l N R =  (7T/2m3)”25(;)P-3‘2 (p<< m’). (38) 

[w(p, m ) l E R  = (27T2/3m2)p-2 ( p  >> m’). (39) 

In the extreme relativistic limit, on the other hand, this function takes the form 

Using (38) or (39) in the bulk term of our basic equation (20), or in any subsequent 
result, the two limiting versions of the problem can be worked out in complete detail. 

4. Derivation of the specific heat 

For the subsequent analysis of the problem, we start with the expression for the energy 
density of the system, namely 

Applying the Poisson summation formula (4), we obtain 

where z and qf are the same as given in equation (7 ) .  First of all, we extract the bulk 
term (with q = 0), namely 

Among the remaining terms (with q # 0), we convert the summation over j into a 
summation over I by using the Poisson summation formula ( 10)-modified for the fact 
that f( j = 0) in the present calculation is non-vanishing. Using equation (A7) of the 
appendix and the recurrence relation (13), we obtain 

where p’ is the same as given in equation (12). Finally, neglecting terms O(e-”’”.) or 
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O(e-”*C), where A T  is the mean thermal wavelength and hc (= m - ’ )  the Compton 
wavelength of the particles, and carrying out the summation over q, we obtain the 
remarkably simple result 

S Singh and R K Pathria 

where y is the same as given in (18). Combining (44) with (19), we obtain for the 
thermal energy density of the system 

where 

with 

As p + m, the function Z(P, p )  can be expressed as 

2Il27T 
g = m  p m S r 2  

( ~tl - p ) + - ( m - p )3’2 +O(m -p ) ’ .  

Noting that 

where W [= W(P,  m ) ]  is given by (28), equations (45)-(48) lead to the final expression 

Note, once again, the cancellation of the singular terms and the emergence of a final 
expression which is a function of y 2  only. 

To determine the specific heat of the system at constant volume, we need to know 
the quantity (aylap),. This can be obtained from the equation (see (8), (20) and (28)) 

To the leading order in a, 

Pm 2( d w/ d P  1 a ($) = coth y - y cosech’ y ’ 

whence 
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where Z =  Z(P, m ) .  Equation ( 5 2 )  will enable us to study the leading finite-size 
correction to the bulk specific heat of the system-in particular, the rounding-off of 
the bulk singularity into a smooth maximum. 

5. Location and height of the specific-heat maximum 

First of all we examine the bulk situation in the vicinity of the critical point ( t  = 0). 
For t > O  and a+m, the thermogeometric parameter y is given by the asymptotic 
expression (34) .  Equation ( 5 2 )  then becomes 

, where 0 < E << 1, equation ( 3 2 )  gives 

( 5 4 )  

Thus, while cp is continuous at the critical point, with 

its derivative with respect to temperature is discontinuous: 

In the non-relativistic case 

which lead to the standard textbook results (see, for example, Pathria 1972b) 

In the extreme relativistic case 
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whence 

in agreement with Haber and Weldon (1981) and with Singh and Pandita (1983). 
In the case of finite a, this cusp-like singularity (at t = 0 )  is rounded-off into a 

smooth maximum (at t = t * ) .  According to (52), the location of the maximum is 
determined by the condition 

coth y* + y* cosech’ y* - 2y*’ coth y* cosech’ y* 
(coth y* - y* cosech’ Y * ) ~  

The right-hand side of this equation is seen to be O(1)-ranging from the value 

$%rf($)/[5(3)l3 = 0.788 . . . 
in the non-relativistic limit to the value $$ = 0.675 in the extreme relativistic limit; the 
corresponding values of y* turn out to be 1.887.. . and 1.090.. . , respectively. The 
location of the maximum is then given by 

which implies a shift, O ( a - l ) ,  towards higher temperatures. For the height of the 
maximum, we obtain 

which implies a reduction in value, again O(a- ’ ) .  It is not difficult to see that the 
curvature of the specific-heat curve at t = t* is O ( a ) .  It follows that, as a tends to 
infinity, the foregoing features of the system merge into a singularity at t = 0. 

We thus find that, quite generally, our results are qualitatively similar to the ones 
obtained by Al’taie in the non-relativistic case. In quantitative terms, there is complete 
agreement with Al’taie in the non-relativistic limit but significant differences appear 
when relativistic effects assume importance. 

Finally we note that, in a recent review of the problem of relativistic Bose-Einstein 
condensation, Landsberg ( 198 1 ) has made some intriguing speculations concerning 
Bose condensation of both massive and massless photons, leaving one with the conjec- 
ture that ‘matter may be regarded as condensed black-body radiation’. It will clearly 
be of interest to see how our considerations in the present paper would affect those 
speculations. We hope to pursue this line of thought in a separate investigation. 
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Appendix 

We wish to evaluate the integral 

Ku[y(j2 +52)1/21 dj 
( j 2  + t2) '1' 

where 

Using the expansion 

m 
cosh(jx) = 1 ( j ~ ) ~ " ' / ( 2 m ) ! ,  

m=O 

the integral (Gradshteyn and Ryzhik 1965) 

and the relation 

(2m)! 
22"'m ! ' 

r ( m  +$) = 

we obtain 

The summation over m appearing here can be carried out exactly by using the 
remarkable formula (ErdClyi 1953) 

remembering at the same time that K-,(z) = K , ( z ) .  It follows that 

A partial differentiation with respect to x then yields the desired result 
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We may as well write down some other integrals which are needed for the evaluation 
of the specific heat of the system, namely 

+ 5 x 2 ( y 2  - x 2 ) ~ / 2 - s / 4  Ku-s,2[5(Y2 - x2)1 /211 ,  
whence one obtains another desired result, namely 

-J& y ;  5) + Y L + , ( x , Y ;  5) 

= X L A X ,  y ;  5 ) .  ('47) 
It seems important to point out here that if the hyperbolic functions appearing in 

the above integrals are replaced by exponentials the resulting integrals turn out to be 
intractable! This might explain why the previous authors, who did not include anti- 
particles into the problem, were unable to make much progress with the relativistic case. 
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